nombre total de tiges IFN1#243 Nombre de tiges de tous les arbres et arbustes vifs et morts (sur pied et à terre) d'au moins 12 cm de diamètre à hauteur de poitrine (DHP) selon la méthode de l'IFN1. Dans l'IFN1, seuls ont été enregistrés les arbres morts dont le bois était encore utilisable. Le nombre total de tiges IFN1 est la somme du nombre de tiges et du nombre de tiges de bois mort IFN1.
diamètre à hauteur de poitrine (10 classes)#1317 Diamètre à hauteur de poitrine (DHP) des arbres et arbustes à partir de 12 cm de diamètre, en dix classes. Source: relevé de terrain (MID 60: Brusthöhendurchmesser, MID 62: Umfang)
essence principale#90 Espèce d'arbre et d'arbuste à partir d'un diamètre à hauteur de poitrine (DHP) de 12 cm, avec des classes individuelles pour les dix espèces ou groupes d'espèces les plus fréquents en Suisse («essences principales») et les classes «autres résineux» et «autres feuillus» pour les autres espèces. Les essences principales sont les épicéas (Picea spp.), les sapins (Abies spp.), les pins (Pinus sylvestris, P. nigra, P. strobus, P. mugo subsp. uncinata), les mélèzes (Larix spp.), l'arole (Pinus cembra), le hêtre (Fagus sylvatica), les érables (Acer spp.), les frênes (Fraxinus spp.), les chênes (Quercus spp.) et le châtaignier (Castanea sativa). Source: relevé de terrain (MID 50: Baumart)
région de production#49 Découpage de la Suisse en cinq régions (Jura, Plateau, Préalpes, Alpes et Sud des Alpes) avec des conditions de croissance et de production de bois relativement homogènes. Les régions de production ont été définies par l'Office fédéral des forêts bien avant le premier inventaire forestier national (IFN1, 1983-1985). À une petite exception près au bord du lac Léman, les frontières des régions de production suivent encore les frontières communales de l'époque. Contrairement à l'IFN, la statistique forestière gérée par l'Office fédéral de la statistique se base non pas sur les régions de production, mais sur les zones forestières, dont la délimitation est légèrement différente.
forêt accessible sans la forêt buissonnante#434 Forêt couverte à moins des deux tiers d'arbustes et accessible à pied.
réseau 1,4 km#410 Réseau d'échantillonnage de l'IFN avec un maillage de 1,4 km. Le réseau 1,4 km est commun à tous les inventaires terrestres précédents, c'est pourquoi il est également appelé réseau de base.
La plupart des tableaux présentent des résultats calculés à l'aide de méthodes statistiques à partir des données de l'inventaire par échantillonnage de l'Inventaire forestier national (IFN). Ces résultats se composent toujours de deux chiffres: 1) la valeur estimée et 2) l'erreur d'échantillonnage, appelée erreur standard.
Exemple 1 : Valeur estimée et erreur standard
IFN5
volume de bois mort (bois de tige)
propriété (2 classes)
découpage régional: région de production
unité: m³/ha
ensemble analysé: forêt accessible sans la forêt buissonnante
réseau: réseau 1,4 km, sous-réseaux 1 à 5
état 2018/26
région de production
Jura
Plateau
Préalpes
Alpes
Sud des Alpes
Suisse
propriété (2 classes)
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
publique
30
10
17
13
37
9
36
6
26
10
30
4
privée
27
17
20
12
50
10
32
8
39
13
34
5
total
29valeur estimée
9erreur standard
19
9
44
7
35
5
29
8
32
3
La plupart du temps, les tableaux indiquent l'erreur standard relative (en pourcentage « ±% »), mais parfois – pour les pourcentages estimés – l'erreur standard absolue (« ± »).
L'erreur standard permet de délimiter des intervalles de confiance autour de la valeur estimée, qui contiennent la vraie valeur de la population avec un certain niveau de certitude statistique.
La certitude statistique est de
68% si l'intervalle de confiance est calculé à l'aide de l'erreur standard simple
(intervalle de confiance à 68% = valeur estimée ± erreur standard), et
95% si l'intervalle de confiance est calculé avec l’erreur standard double
(intervalle de confiance à 95% = valeur estimée ± 2 × erreur standard*)
Exemple 2 : Calculer les intervalles de confiance
IFN5
volume de bois mort (bois de tige)
propriété (2 classes)
découpage régional: région de production
unité: m³/ha
ensemble analysé: forêt accessible sans la forêt buissonnante
réseau: réseau 1,4 km, sous-réseaux 1 à 5
état 2018/26
région de production
Jura
propriété (2 classes)
m³/ha
±%
publique
30
10
privée
27
17
total
29
9
Question
Quel est l'intervalle de confiance à 68% et à 95% des estimations ci-dessus ?
Procédure
Calculer l'erreur standard absolue (= erreur standard relative × valeur estimée / 100)
Calculer les intervalles de confiance
intervalle de confiance à 68% = estimation ± erreur standard absolue
intervalle de confiance à 95% = estimation ± 2 × erreur standard absolue
Réponse
étape 1
étape 2
propriété (2 classes)
volume de bois mort Jura IFN5
valeur estimée
erreur standard
intervalle de confiance
relative
absolue
68%
95%
m³/ha
±%
±m³/ha
m³/ha
m³/ha
publique
30
10
3
27-33
24-36
privée
27
17
5
22-32
17-37
total
29
9
3
26-32calculé avec l'erreur standard simple, c'est-à-dire 29 ± 3
23-35calculé avec l'erreur standard double, soit 29 ± 2 × 3
Dans le Jura, le volume de bois mort se situe avec une certitude statistique de 68% entre 26 et 32 m³/ha et avec une certitude statistique de 95% entre 23 et 35 m³/ha.
L'intervalle de confiance à 95% est plus grand que l'intervalle de confiance à 68%. C'est ce qui explique la plus grande certitude statistique.
Exemple 3 : Visualisation de l'intervalle de confiance à 68% et à 95%
Données : voir exemple 2
Lors de l'interprétation des résultats, il faut à chaque fois déterminer le niveau de certitude avec lequel on souhaite faire une déclaration.
Dans l'Inventaire forestier national (IFN), on se base en général sur l'intervalle de confiance à 68%.
3. Quand deux résultats sont-ils statistiquement différents ?*
On peut le déterminer en comparant les intervalles de confiance de deux estimations :
Si les intervalles de confiance à 68% de deux estimations ne se chevauchent pas, on peut supposer avec une certaine certitude que les deux populations sont différentes.
Si les intervalles de confiance à 95% de deux estimations ne se chevauchent pas, on peut supposer avec une grande certitude que les deux populations sont différentes.
Exemple 4 : Interprétation de deux résultats du même inventaire
IFN5
volume des arbres vifs (bois de tige)
propriété (2 classes)
découpage régional: région de production
unité: m³/ha
ensemble analysé: forêt accessible sans la forêt buissonnante
réseau: réseau 1,4 km, sous-réseaux 1 à 5
état 2018/26
région de production
Jura
Plateau
Préalpes
Alpes
Sud des Alpes
Suisse
propriété (2 classes)
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
publique
331
3
311
3
405
4
300
3
256
5
314
2
privée
387
5
432
4
454
4
348
4
285
6
398
2
total
345
2
363
2
431
2
314
2
262
4
343
1
cas 2
cas 1
cas 1
Question
Le volume des arbres vifs par hectare est-il plus élevé dans les Alpes qu'au Sud des Alpes ?
Procédure
Calculer les erreurs standard absolues
Calculer les intervalles de confiance en fonction du niveau de certitude souhaité :
intervalles de confiance à 68% (certaine certitude ; erreur standard absolue simple)
intervalles de confiance à 95% (grande certitude; erreur standard absolue double)
Vérifier si les intervalles de confiance ne se chevauchent pas au niveau de certitude souhaité
Réponse
propriété (2 classes)
volume des arbres vifs, IFN5
Alpes
Sud des Alpes
valeur estimée
erreur standard
intervalle de confiance
valeur estimée
erreur standard
intervalle de confiance
relative
absolue
68%
95%
relative
absolue
68%
95%
m³/ha
±%
±m³/ha
m³/ha
m³/ha
m³/ha
±%
±m³/ha
m³/ha
m³/ha
total
314
2
6
308-320
302-326
262
4
10
252-272
242-282
Ni les intervalles de confiance à 68% ni les intervalles de confiance à 95% ne se chevauchent (chiffres ).
Dans ce cas, le niveau de certitude choisi n'a aucune influence sur le résultat.
Dans l'ensemble, cela signifie qu'il existe une grande certitude statistique que le volume des arbres vifs par hectare est plus élevé dans les Alpes qu'au Sud des Alpes.
cas 2
Question
Le volume des arbres vifs par hectare est-il plus élevé sur le Plateau que dans le Jura ?
Procédure
Voir cas 1.
Réponse
propriété (2 classes)
volume des arbres vifs, IFN5
Jura
Plateau
valeur estimée
erreur standard
intervalle de confiance
valeur estimée
erreur standard
intervalle de confiance
relative
absolue
68%
95%
relative
absolue
68%
95%
m³/ha
±%
±m³/ha
m³/ha
m³/ha
m³/ha
±%
±m³/ha
m³/ha
m³/ha
total
345
2
7
338-352
331-359
363
2
7
356-370
349-377
Les intervalles de confiance à 68% ne se chevauchent pas (paires de chiffres ).
En revanche, les intervalles de confiance à 95% se chevauchent (paires de chiffres ).
Dans ce cas, le niveau de certitude choisi a une influence sur l'interprétation des résultats : au niveau de l'intervalle de confiance à 68%, on arrive à la conclusion que le volume des arbres vifs par hectare est plus élevé sur le Plateau que dans le Jura. Au niveau de l'intervalle de confiance à 95%, on ne peut en revanche pas tirer cette conclusion.
En considérant les deux niveaux de certitude, on peut dire qu'il existe statistiquement une certaine, mais pas une grande certitude, que le volume des arbres vifs par hectare est plus élevé sur le Plateau que dans le Jura.
Les intervalles de confiance permettent également de vérifier si une valeur estimée à l'aide de l'échantillon de l’Inventaire forestier national (IFN) s'écarte d'une valeur cible (issue par exemple de la politique forestière) ou si une évolution entre deux inventaires est statistiquement certaine.
Exemple 5 : Interprétation de deux résultats d'inventaires différents
propriété (2 classes)
volume des arbres vifs sur Plateau*
IFN4
IFN5
m³/ha
±%
m³/ha
±%
publique
340
3
309
3
privée
447
4
432
4
total
386
2
363
2
* forêt accessible sans la forêt buissonnante IFN4/IFN5
Question
Sur le Plateau, le volume des arbres vifs par hectare a-t-il diminué entre l'IFN4 et l'IFN5 ?
Procédure
calculer les erreurs standard absolues
calculer les intervalles de confiance en fonction du niveau de certitude souhaité
intervalles de confiance à 68% (certaine certitude ; erreur standard absolue simple)
intervalles de confiance à 95% (grande certitude; erreur standard absolue double)
vérifier si les intervalles de confiance ne se chevauchent pas au niveau de certitude souhaité
Réponse
propriété (2 classes)
volume des arbres vifs sur le Plateau*
IFN4
IFN5
valeur estimée
erreur standard
intervalle de confiance
valeur estimée
erreur standard
intervalle de confiance
relative
absolue
68%
95%
relative
absolue
68%
95%
m³/ha
±%
±
m³/ha
m³/ha
m³/ha
±%
±
m³/ha
m³/ha
publique
340
3
11
329-351
318-362
309
3
11
298-320
287-331
privée
447
4
16
431-463
415-479
432
4
17
415-449
398-466
total
386
2
8
378-394
370-402
363
2
9
354-372
345-381
* forêt accessible sans la forêt buissonnante IFN4/IFN5
Les intervalles de confiance à 68% ne se chevauchent pas pour les forêts publiques et le total (paires de chiffres ), mais ils le font pour les forêts privées (paires de chiffres ). Au niveau de certitude des intervalles de confiance à 68%, on arrive à la conclusion que le volume des arbres vifs par hectare a diminué au Plateau dans les forêts publiques et en total. Pour les forêts privées, la diminution n'est pas statistiquement certaine.
Les intervalles de confiance à 95% se chevauchent dans chacune des trois catégories. Au niveau de certitude des intervalles de confiance à 95%, il n'est donc pas statistiquement certain que le volume des arbres vifs ait diminué, même pour les forêts publiques et le total.
Voir toutefois les exemples 6 et 7, dans lesquels les évolutions entre deux inventaires sont interprétées à l'aide du bilan, qui est plus sensible.
Pour de nombreuses variables cibles, l'IFN permet de vérifier si une évolution entre deux inventaires est statistiquement certaine, non seulement en comparant les états dans les deux inventaires (voir exemple 5), mais aussi en analysant le bilan entre les deux inventaires.
Pour ce faire, il faut là aussi commencer par définir le niveau de certitude qui doit s'appliquer à l'énoncé :
Une évolution a eu lieu avec une certaine certitude si l'erreur standard relative simple du bilan est inférieure à 100% ou si l'intervalle de confiance calculé avec l'erreur standard absolue simple (intervalle de confiance à 68%) n'inclut pas la valeur 0.
Une évolution a eu lieu avec une grande certitude si la double erreur standard relative du bilan est inférieure à 100% ou si l'intervalle de confiance calculé avec la double erreur standard absolue (intervalle de confiance à 95%) n'inclut pas la valeur 0.
Exemple 6 : Interprétation des évolutions (bilans) avec l'erreur standard relative
propriété (2 classes)
évolution du volume des arbres vifs IFN4–IFN5 sur le Plateau*
valeur estimée
erreur standard
m³/ha
±%
publique
-34
30
privée
-9
147
total
-23
34
* forêt accessible sans la forêt buissonnante IFN4/IFN5
Question
Sur le Plateau, le volume des arbre vifs par hectare a-t-il diminué entre l’IFN4 et l’IFN5 ?
Procédure
Définir le niveau de certitude (intervalle de confiance à 68% ou 95%)
Vérifier si
l'erreur standard relative simple est inférieure à 100% (niveau de certitude de l'intervalle de confiance à 68%)
l'erreur standard relative double est inférieure à 100% (niveau de certitude de l'intervalle de confiance à 95%)
Réponse
propriété (2 classes)
évolution du volume des arbres vifs IFN4–IFN5 sur le Plateau*
valeur estimée
erreur standard
simple
double
m³/ha
±%
±%
publique
-34
30
60
privée
-9
147
294
total
-23
34
68
* forêt accessible sans la forêt buissonnante IFN4/IFN5
L'erreur standard relative simple est inférieure à 100% pour les forêts publiques comme pour le total (chiffres ). En revanche, elle est supérieure à 100% (chiffres ) pour les forêts privées. Au niveau de certitude de l'intervalle de confiance à 68%, on conclut que le volume des arbres vifs a diminué sur le Plateau, tant dans les forêts publiques que dans le total. En revanche, la diminution du volume n'est pas statistiquement certaine pour les forêts privées.
On arrive à la même conclusion dans cet exemple avec le niveau de certitude de l’intervalle de confiance à 95%, car l’erreur standard relative double pour la forêt publique et le total est également inférieure à 100%.
Dans l'ensemble, cela signifie que la certitude statistique est élevée que le volume par hectare a diminué sur le Plateau dans les forêts publiques comme dans l'ensemble. En revanche, pour les forêts privées, la diminution du volume n'est pas statistiquement certaine (car l'erreur standard relative double et l'erreur standard relative simple sont toutes les deux inférieures à 100%).
Exemple 7 : Interprétation des évolutions (bilans) avec l'erreur standard absolue
propriété (2 classes)
évolution du volume des arbres vifs IFN4–IFN5 sur le Plateau*
valeur estimée
erreur standard
%
±
publique
-10
3
privée
-2
3
total
-6
2
* forêt accessible sans la forêt buissonnante IFN4/IFN5
Question
Sur le Plateau, le volume des arbres vifs par hectare a-t-il diminué entre l'IFN4 et l'IFN5 ?
Procédure
Définir le niveau de certitude (intervalle de confiance à 68% ou 95%)
Calculer l'intervalle de confiance sur la base du niveau de certitude défini
intervalle de confiance à 68% avec l'erreur standard absolue simple
intervalle de confiance à 95% avec l'erreur standard absolue double
Vérifier si l'intervalle de confiance correspondant n'inclut pas la valeur 0
Réponse
propriété (2 classes)
évolution du volume des arbres vifs IFN4–IFN5 sur le Plateau*
valeur estimée
erreur standard
intervalle de confiance
simple
double
68%
95%
%
±
±
%
%
publique
-10
3
6
-13 à -7
-16 à -4
privée
-2
3
6
-5 à +1
-8 à +4
total
-6
2
4
-8 à -4
-10 à -2
* forêt accessible sans la forêt buissonnante IFN4/IFN5
Pour les forêts publiques comme pour le total, tant l'intervalle de confiance à 68% que celui à 95% n'incluent pas la valeur 0. Pour les deux niveaux de certitude, on arrive ainsi à la conclusion que le volume des arbres vifs a diminué sur le Plateau, tant dans les forêts publiques que dans le total. En revanche, la diminution du volume n'est pas statistiquement certaine pour les forêts privées (car les intervalles de confiance incluent la valeur 0).
Les évolutions (bilans) peuvent être interprétées à l'aide de l'erreur standard absolue ou relative (voir les exemples 6 et 7). Il est recommandé d'utiliser l'erreur standard absolue lorsque la valeur estimée est indiquée en pourcentage (%) dans le tableau (comme dans l'exemple 7) et l'erreur standard relative lorsque la valeur estimée est indiquée en chiffres absolus (m³, m³/ha, pc, m2) dans le tableau (comme dans l'exemple 6). Ainsi, l'erreur standard peut être directement extraite du tableau et ne doit donc pas être convertie.
Pour vérifier si une évolution est statistiquement assurée, il est recommandé d'analyser, dans la mesure du possible, le bilan entre les deux inventaires. Les bilans sont plus sensibles que les comparaisons d'état, ce qui permet de mieux détecter les différences sur le plan statistique (voir les exemples 5, 6 et 7).
4. Quand ne suffit-il pas de considérer uniquement l'erreur standard ?
L'Inventaire forestier national (IFN) est un inventaire à grande échelle basé sur des échantillons, dont les placettes d'échantillonnage sont disposées sur une grille dont les mailles mesurent 1,4 km × 1,4 km. L'IFN a été conçu de manière à pouvoir prédire le volume des arbres vifs pour l'ensemble de la Suisse avec une erreur standard maximale de 1%.
Lorsque les résultats sont calculés pour des régions ou des classes individuelles, l'erreur standard augmente rapidement. Cela s'explique par le fait que pour la combinaison d'expressions de variables* choisie, le nombre de placettes d'échantillonnage et d'objets examinés (c'est-à-dire d'arbres échantillons, de plantes de la jeune forêt, de morceaux de bois mort, etc.) est nettement plus faible que pour le total.
Exemple 8 : Erreur standard et combinaison d’expression de variables
région
volume des arbres vifs
total
érable
érable sycomore
érable plane
valeur estimée
erreur standard
valeur estimée
erreur standard
valeur estimée
erreur standard
valeur estimée
erreur standard
m³/ha
±%
m³/ha
±%
m³/ha
±%
m³/ha
±%
Suisse
343
1
12
5
11
5
1
20
région de production "Plateau"
363
2
15
10
14
11
0
50
canton d'Argovie
289
7
15
20
13
20
1
63
L'erreur standard augmente avec le niveau de détail.
On peut s'attendre à des erreurs standard importantes si
les arrondissements forestiers ont été choisis comme découpage régional ou que les résultats sont calculés pour de petits cantons (p. ex. Appenzell Rhodes-Intérieures, Nidwald),
une variable de classification comportant de nombreuses classes a été choisie (p. ex. l'essence dans 56 classes),
plusieurs variables de classification ont été combinées (par exemple, l'essence principale et le stade de développement).
Des erreurs standard importantes indiquent qu'une estimation a peut-être été réalisée sur la base d'un nombre trop faible de placettes d'échantillonnage ou d'objets et que, par conséquent, le résultat de l'estimation pourrait ne pas être fiable.
Pour la variable cible « nombre de tiges de la jeune forêt avec abroutissement » (intensité de l'abroutissement), l'incertitude de l'estimation ne se traduit pas nécessairement par une erreur standard élevée. Cela s'explique par le fait que cette variable cible est une estimation sous forme de quotient** qui, en raison de la méthode de relevé, ne repose pour les essences relativement rares (p. ex. pin, mélèze, arole, chêne, châtaignier) que sur un petit nombre d’individus examinés. En conséquence, pour la valeur cible « nombre de tiges de la jeune forêt avec abroutissement », il faudrait toujours vérifier le nombre de plantes examinées sur lequel se basent les différentes valeurs estimées. En règle générale, pour chaque valeur estimée, au moins 30 plantes de la jeune forêt devraient être examinées quant à l’abroutissement pour obtenir une estimation fiable.
L'Inventaire forestier national (IFN) distingue deux types d’évolutions:
Le premier type concerne des variables cibles spécifiques pour des composantes d’évolution telles que l'accroissement, l'exploitation ou la mortalité. Ces variables cibles ne sont disponibles que pour deux cycles de mesure successifs, par exemple IFN4-IFN5. Lors de l'évaluation des composantes d’évolution, l’expression de la variable de classification du second cycle de mesure est généralement attribuée au premier cycle de mesure. Ces évaluations ne tiennent donc pas compte du changement de l'expression d'une variable de classification (par exemple de la propriété privée à la propriété publique) entre deux inventaires successifs.
Dans le deuxième type, la différence entre des variables cibles telles que le nombre de tiges, le volume des arbres vifs ou la surface forestière est utilisée pour dresser le bilan de l’évolution entre deux cycles de mesure. Ces variables cibles sont généralement utilisées pour représenter des états, par exemple l'IFN5, mais peuvent montrer le bilan entre deux cycles de mesure successifs ou non, par exemple l'IFN1 et l'IFN5. Dans ces évaluations, le changement de l'expression est pris en compte pour une partie des variables de classification. Il s'agit par exemple des variables de classification « état des arbres » ou « forêt, non forêt ». Ainsi, on peut voir par exemple que la surface forestière a augmenté. Pour l'autre partie des variables de classification, les expressions sont considérées comme statiques. Cela signifie que l'état le plus actuel – qu'il ait été relevé dans un cycle de mesure (p. ex. fonction prioritaire IFN5) ou qu'il provienne d'une source de données externe (p. ex. forêt protectrice [2022]) – est attribué à tous les cycles de mesure.
6. Évaluations de l’évolution : quand les résultats sont-ils (non) additifs ?
Les résultats sont
additifs lorsqu'ils sont présentés en tant qu’évolution totale entre deux points de mesure. Par exemple, les exploitations indiquées en mètres cubes (m³) pour les différentes régions de production peuvent être additionnées pour obtenir l'exploitation pour la Suisse.
ne sont pas additifs s’il sont présentés en tant qu’évolution par année (p. ex. m³/an). En conséquence, les exploitations indiquées en mètres cubes par an (m³/an) pour les différentes régions de production, par exemple, ne peuvent pas être additionnées pour obtenir l'exploitation pour la Suisse.
Exemple 9 : Additivité/non-additivité des évolutions
volume des abres vifs: évolution totale IFN4–IFN5 (1000 m³)*
Jura
Plateau
Préalpes
Alpes
Sud des Alpes
Suisse
zones supérieures/inférieures
1000 m³
±%
1000 m³
±%
1000 m³
±%
1000 m³
±%
1000 m³
±%
1000 m³
±%
zones inférieures
-3759.0
28
-4909.1
36
-1025.2
133
-317.1
195
3464.1
31
-6546.3
42
zones supérieures
574.3
117
-328.0
62
1093.0
123
7128.4
21
666.7
93
9134.3
24
total
-3184.7
40
-5237.1
34
67.9
2805
6811.3
23
4130.8
30
2588.1
136
* dans la forêt accessible sans la forêt buissonnante IFN4/IFN5
additif
volume des arbres vifs: évolutions par an IFN4–IFN5 (in 1000 m³/an)*
Jura
Plateau
Préalpes
Alpes
Sud des Alpes
Suisse
zones supérieures/inférieures
1000 m³/an
±%
1000 m³/an
±%
1000 m³/an
±%
1000 m³/an
±%
1000 m³/an
±%
1000 m³/an
±%
zones inférieures
-421.1
28
-560.6
36
-115.7
133
-35.9
195
389.5
31
-740.7
42
zones supérieures
64.7
117
-38.3
62
122.4
123
810.4
21
74.9
93
1032.7
24
total
-357.3
40
-598.4
34
7.6
2805
773.8
23
464.4
30
292.7
136
* dans la forêt accessible sans la forêt buissonnante IFN4/IFN5
non additif
La non-additivité des évolutions par année provient du fait que l’évolution totale est divisée par le nombre moyen d'années qui s'écoule entre les deux mesures dans le domaine* considérée et que le nombre moyen d'années varie légèrement selon le domaine*.
Exemple 10 : Nombre moyen d'années par région
domaine
nombre moyen d’années
région de production
zones supérieures/inférieures
Plateau
-
8.75
Plateau
zones supérieures
8.56
zones inférieures
8.76
Sud des Alpes
-
8.90
Sud des Alpes
zones supérieures
8.90
zones inférieures
8.89
* entre les mesures de l’IFN4 et de l’IFN5 dans la forêt accessible sans la forêt buissonnante
7. Pourquoi l'erreur standard et la valeur estimée sont-elles parfois représentées par un point (« . ») ?
Lors du calcul d'un tableau de résultats, les données ne sont pas toujours disponibles pour toutes les combinaisons d'expressions de variables de classification*. Dans la plupart des cas, cela indique que le paramètre estimé à l'aide de la variable cible n'existe pas ou n'existe que très rarement. Généralement, on introduit alors la valeur 0. Mais comme cette valeur ne repose sur aucune mesure directe, l'erreur standard correspondante est représentée par un point (« . »). Si le calcul se réfère à la valeur supposée de 0, par exemple pour les pourcentages ou certaines estimations d’évolution, aucune valeur ne peut être utilisée. Dans ce cas, la valeur estimée et l'erreur standard sont représentées par un point (« . »).
Par exemple, aucun arole n'a été trouvé et mesuré jusqu'à présent par l’Inventaire forestier national (IFN) sur le Plateau (volume des aroles vifs par région de production). On peut donc supposer que les valeurs manquent parce que l'arole n'est effectivement pas présent sur le Plateau et que le volume doit donc y être nul.
8. Pourquoi certains tableaux n'indiquent-ils pas d'erreur standard ?
Les données de ces tableaux proviennent d'un relevé exhaustif et non d'un inventaire par échantillonnage. En conséquence, il n'est pas nécessaire d'indiquer une erreur standard puisqu'il n'y a pas d'incertitude liée à l'échantillonnage.
Par exemple, le relevé de desserte que l'Inventaire forestier national (IFN) effectue périodiquement auprès des services forestiers locaux est un relevé exhaustif.
Valeurs négatives en cas de volume, d'accroissement ou d'exploitation ?
Des valeurs négatives sont possibles si le résultat n'a pu être calculé qu'à partir de quelques arbres. L'estimation n'est donc pas fiable. Cela se reflète également dans l'erreur standard, qui est en général particulièrement élevée lorsque les valeurs de volume, d'accroissement ou d'exploitation sont négatives.
Les valeurs négatives sont dues au fait que, lors de la détermination du volume de bois de tige des arbres échantillons, le volume estimé uniquement sur la base du diamètre à hauteur de poitrine (DHP) est ajusté avec le volume des arbres échantillons de tarif estimé sur la base du DHP, du diamètre à 7 m de hauteur et de la hauteur des arbres. Cette procédure permet un calcul non biaisé et plus précis du volume de bois de tige. Elle peut toutefois conduire à des valeurs négatives pour toutes les variables cibles basées sur le volume de bois de tige des arbres d'échantillonnage (p. ex. volume des arbres vifs, accroissement, exploitation) si le nombre d'arbres d'échantillonnage dans une combinaison d’expressions de variables* est faible.